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The evolution of long waves generated by a pressure disturbance acting on an initially 
unperturbed free surface in a channel of finite depth is analysed. Both off-critical and 
transcritical conditions are considered in the context of the fully nonlinear inviscid 
problem. The solution is achieved by using an accurate boundary integral approach 
and a time-stepping procedure for the free-surface dynamics. 

The discussion emphasizes the comparison between the present results and those 
provided by both the Boussinesq and the related Korteweg-de Vries model. For small 
amplitudes of the forcing, the predictions of the asymptotic theories are essentially 
confirmed. However, for finite intensities of the disturbance, several new features 
significantly affect the physical results. In particular, the interaction among different 
wave components, neglected in the Korteweg-de Vries approximation, is crucial in 
determining the evolution of the wave system. A substantial difference is indeed 
observed between the solutions of the Korteweg-de Vries equation and those of both 
the fully nonlinear and the Boussinesq model. For increasing dispersion and fixed 
nonlinearity the agreement between the Boussinesq and fully nonlinear description is 
lost, indicating a regime where dispersion becomes dominant. 

Consistently with the long-wave modelling, the transcritical regime is characterized 
by an unsteady flow and a periodic emission of forward-running waves. However, 
also in this case, quantitative differences are observed between the three models. For 
larger amplitudes, wave steepening is almost invariably observed as a precursor of 
the localized breaking commonly detected in the experiments. The process occurs 
at the crests of either the trailing or the upstream-emitted wave system for Froude 
numbers slightly sub- and super-critical respectively. 

1. Introduction 
The properties of waves in water of finite depth, generated by a moving pressure 

disturbance running on an initially flat free surface, depend on a few parameters 
of the forcing. In particular the speed and length of the pressure disturbance are 
crucial and they are selected here to excite wavelengths long with respect to the water 
depth h. Under such conditions nonlinear effects, measured in terms of the forcing 
amplitude, are known to have a predominant role. They are especially noticeable 
in transcritical conditions, when the speed U of the disturbance almost equals the 
limiting wave celerity (gh)1'2. In this case, in fact, the linear model completely breaks 
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down (Stoker 1957; Akylas 1984) and more refined theories are necessary to describe, 
even at a qualitative level, the behaviour of the wave system. 

When nonlinear effects and dispersion nearly balance, the class of Boussinesq mod- 
els is obtained in the limit of small amplitude. In this framework, since Wu developed 
a generalized Boussinesq (gB) approach for forced systems, the flow generated by a 
moving pressure patch has been thoroughly analysed. In particular, it was numerically 
shown by Wu & Wu (1982) that, when Fr = U/(gh) l /*  ‘v 1, a periodic emission of 
upstream-running wave packets occurs and, though the forcing is time independent, 
the flow is not able to attain a steady state. Akylas (1984) and Cole (1985), starting 
from the blow-up of the critical linear solution, achieved the same phenomenon 
and showed that, far from the forcing, the wave motion obeys a singularly forced 
Korteweg-de Vries (KdV) equation. Forced KdV equations have also been used by 
Melville & Helfrich (1987) to model transcritical conditions in stratified flows and 
eventually extended to the three-dimensional problem (Tomasson & Melville 1991). 
In this context the major difference from the corresponding free-surface problem is a 
cubic nonlinearity which substantially modifies the nature of the transcritical regime. 

Weakly nonlinear formulations also provide an effective model for off-critical 
conditions when the forcing is designed to generate long waves. Specifically, Kevorkian 
& Yu (1989) by means of a multiple-scale approach devised approximate solutions 
of the Boussinesq system described in terms of three uncoupled waves. Two of them 
are governed by homogeneous KdV equations in which the initial conditions depend 
on the ‘shape’ and the speed of the forcing. The third wave is stationary with respect 
to the pressure disturbance. 

In experiments, the emission of runaway soliton-like pulses in transcritical flows 
was observed in towing tank tests by Thews & Landweber (1936); while, operating in 
a similar context, Huang et al. (1982) later rediscovered the same phenomenon (see 
also Ertekin, Webster & Wehausen 1984). Successively, specially designed experiments, 
with the disturbance originated by a suitably moving bottom topography, broadly 
confirmed the approximate theory for transcritical flows (Lee, Yates & Wu 1989). 
It may be noted however, that unavoidable uncertainties hamper the comparison 
between theory and experiments; in particular some difficulties in detecting incipient 
wave breaking are encountered and the effects on the waves of the boundary layer at 
the moving topography are difficult to assess quantitatively. 

These considerations suggest comparison of the weakly nonlinear theories with 
accurate numerical solutions of the nonlinear inviscid problem in an attempt to point 
out the possible relevance of the terms neglected in the approximate approaches. For 
this purpose, we consider fully nonlinear solutions together with the predictions of 
two basic formulations : namely the generalized Boussinesq model and the related 
Korteweg-de Vries description. The latter approach, in particular, exhibits several 
nice features that we would like to exploit. Despite the possibly larger degree of 
approximation, it gives a more direct insight into the mechanics of forced long waves. 
Moreover it predicts a sort of amplitude invariance when properly scaled variables are 
chosen. A rational guideline may follow for discussing the present nonlinear results. 
However, since the scaling does not hold exactly for the original Boussinesq model, it 
is convenient to consider numerical solutions of both the approximate formulations. 

In this context, a large set of numerical solutions of the nonlinear problem are care- 
fully discussed. In particular, the effect of increasing pressure amplitudes is analysed 
in detail. As expected, the scaling suggested by the KdV approximation is recovered 
in the small-amplitude limit. Nevertheless, discrepancies are observed for small finite 
intensities of the forcing. Their origin is discussed at length. For off-critical flows, we 
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suggest the interaction among the different components of the wave pattern, occurring 
during the initial stage, as the mechanism which explains the differences observed 
between the KdV solutions and the present exact calculations. This conjecture is 
substantiated by solving the Boussinesq problem, where the interactions, intrinsic to 
this model, yield results almost exactly matching the nonlinear computations. With 
regard to the critical regime, for increasing amplitude of the forcing, more marked 
differences are observed between the Boussinesq approximation and the numerical 
solutions of the exact problem. 

Although a systematic analysis in this direction has not been undertaken, incipient 
wave breaking is often observed in the numerical experiments, an aspect considered 
in more detail by Teles da Silva & Peregrine (1 992) for the case of a moving bottom 
topography. Actually, a complete theory of breaking is not at present available, but 
it is known, Dommermuth et ul. (1988), that fully nonlinear inviscid calculations may 
provide an accurate description of the steepening phase, immediately preceding the 
actual wave breaking. In fact, our results qualitatively reproduce the corresponding 
experimental observations (Lee et al. 1989; Ertekin et al. 1984). Namely, for 
transcritical flows at a fixed amplitude of the forcing, when the subcritical detuning 
from F r  = 1 is increased, the trailing crest is always observed to undergo a localized 
steepening. For increasing supercritical detuning, we find the first forward running 
wave manifesting a definite tendency towards overturning. 

The numerical formulation of the nonlinear problem is essentially based on a 
boundary integral representation for the velocity field, Casciola & Piva (1990), and a 
stepping procedure for the free-surface evolution, Longuet-Higgins & Cokelet (1976). 
As a whole, the algorithm is similar to others previously used to simulate unsteady 
free-surface flows (see e.g. Vinje & Brevig 1981; New, McIver & Peregrine 1985; 
Baker, Meiron & Orszag 1989). Details are discussed in $2. Since the present work 
has been essentially conceived as a comparison between the fully nonlinear description 
and basic weakly nonlinear models, in $3 the relevant theoretical results are recalled, 
essentially with the aim of introducing the scalings extensively used in the following. 
This section, where no particularly new result is introduced, is in fact a review based 
on the multiple-scale formalism as originally proposed in Kevorkian & Yu (1989). 
Sections 4 and 5 describe the forced wave patterns for off-critical and transcritical 
flows respectively and, finally, some conclusions are drawn in 56. 

2. The fully nonlinear approach 
In a channel of uniform depth h, a motionless fluid of density p subject to gravity, 

g, is considered. The vertical direction defines the y-axis with unit vector j pointing 
upwards. At time t* = 0 a pressure disturbance p*,  with compact support of length 
2 e, suddenly forces the initially flat free surface. The pressure excitation moves, with 
respect to the undisturbed fluid, in the negative x-direction at constant velocity U and 
generates an irrotational wave system. For wavelengths long compared with the depth, 
a velocity scale is suitably determined by the linear limiting speed %‘o = (gh)’I2,  which 
fixes the relevant Froude number as F = U / q 0 .  The two other quantities required 
to recast the problem in dimensionless form are chosen as the constant density p 
and as the initial depth h respectively. Accordingly the dimensionless pressure is 

A sketch of the geometry and the corresponding nomenclature are given in figure 1. 
The wave profile 9, with unit tangent and normal vectors z and v respectively, is 

!?? = P * / ( P  g h). 
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FIGURE 1. Geometry of the problem and nomenclature adopted. 

described by the parametric equations 

x = x(a,t), Y = Y ( %  t ) ,  a E Y a ,  (2.1) 
where a is a curvilinear coordinate along the free surface. By exploiting the material 
nature of the interface, a may be identified with a Lagrangian parameter along 9. 
Hence the kinematic condition is simply 

- D x  
- - v ,  D t  

with u = u - U the velocity in the frame of the disturbance and u the perturbation of 
the free stream -U. The tangential projection of the incompressible Euler equation 
yields the dynamic condition in the form 

which holds in the general rotational case (Casciola & Piva 1990). After introducing 
the tangent vector e, = (ax/&, dy/aa) ,  a more compact expression, 

is achieved in terms of the covariant velocity component u, = u * e,. 
The velocity field in the fluid domain may be expressed in terms of the Poincari 

representation formula, Bassanini et a/. (1991), which for irrotational flows, after 
introducing the unit vector k normal to the flow plane, reads 

(2.5) s, s, u(x* )  = -V* u,G+ df + V* x u,kG- df , 

where the boundary condition u - v  = 0 at the bottom of the channel has been 
implicitly enforced through the method of images. In particular, by denoting with 
a subscript s the mirror image of a point with respect to the bottom, the kernel 
functions in (2.5) are 

n (x - x*\ +_In (x, - x*l) . 1 
271. 

G" = - (1 

An integral equation for u, may be obtained from (2.5) by projecting along the 
normal v, after considering the limiting form of the integral representation as the 
point x* approaches the free surface. The system consisting of the boundary integral 
equation, coupled with (2.2), (2.4), describes the nonlinear dynamics of the unsteady 
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free surface. An approximate solution may be obtained by means of a stepping 
procedure, where a standard fourth-order Runge-Kutta scheme is used to solve the 
evolution equations (2.2), (2.4). At each sub-step a boundary integral equation is solved 
to determine u, from the configuration of the free surface and from the values of u,. 
The integral equation is approximated via a quadrature method (Cooker et al. 1990) 
based on the Euler-MacLaurin summation formula, see e.g. Sidi & Israeli (1958). By 
this method spectral accuracy is normally achieved for compactly supported densities, 
as they may be assumed, on physical grounds, for finite times after the onset of the 
pressure disturbance. However, since we aim to analyse long evolutions, we are 
forced to truncate the computational domain. In these conditions, u, and u, as well 
as the free-surface elevation do not vanish at the edges and unphysical reflections 
usually occur. This drawback is avoided by the introduction of artificial damping 
layers (Israeli & Orszag 1981; Baker et al. 1989), which, by forcing the densities 
to vanish towards the edges of the computational domain, prevent the unwanted 
reflections. In principle this procedure may reduce the accuracy of the computation, 
which however is maintained under control by performing an a posteriori check, i.e. 
by comparing different solutions for increasing domain lengths. In particular, the 
evolution equations (2.2), (2.4) are modified according to 

Dx 
~ = v - p q j ,  D t  

The damping coefficient, p(x), is zero everywhere except within the damping regions, 
where it increases quadratically from zero to a suitable value pmax attained at the 
outer edge of the sponge layer. The length &d of the two damping layers and the 
maximum damping coefficient, pmar, have been heuristically determined and typical 
values are d d / C  ‘v 2 and pmax h/Vo 2: 0.5 respectively. 

The quadrature formula chosen to discretize the boundary integral equation requires 
the derivative of the tangential velocity as well as the wave slope and curvature. Hence 
the accuracy of the computation strongly depends upon the discrete representation 
adopted for the densities and the geometry. In particular both Fourier (Roberts 
1983) and Lagrange polynomials (Dold 1992) have been tested, using standard FFT 
techniques in the former case. No significant difference between the two approaches 
has been detected so far and, since a slightly more efficient code results, the actual 
algorithm relies upon the fully spectral approach. To enhance the computational 
performances, an iterative solver is used instead of a direct matrix inversion. 

For the present scheme, a sawtooth instability, originally discussed by Longuet- 
Higgins & Cokelet (1976), usually sets in for long evolutions. It is found to be almost 
independent of the time step chosen, and tests with Stokes waves indicate that it is 
related to the steepness, i.e. the breakdown time is anticipated for steeper waves. To 
remove the instability high-order filtering procedures (see Dold 1992) are used, after 
verifying the conservation of several invariants of motion. 

In terms of computational efficiency, the resulting code requires the evaluation of 
four influence matrices per time step and the solution of the corresponding algebraic 
systems, which however is rapidly obtained by means of an iterative solver. A 
significant speed up could be achieved by a different stepping procedure, based on 
the analytical continuation in time of the solution (Dold & Peregrine 1986). The 
resulting algorithm also presents better stability characteristics and reduces the need 
for the smoothing of the solutions. However, since the physical results are not 
significantly altered by the filtering, the present approach was selected for its simpler 
implementation. A further point we would like to mention, although not directly 
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concerned with the present problem, is the easier extension to rotational flows in the 
context of vortex methods. 

All the results presented, obtained on a IBM RISC 6000 mod. 540 workstation, 
have been checked under spatial and temporal refinement. In particular, each run has 
been repeated with finer parameters until a convergence within four significant digits 
of the L2 norm is achieved for the final configuration of the free-surface elevation. 
Typically, the number of nodes on the free surface ranges from 512 to 2048 while up 
to 10000 time steps are required for the longest evolutions considered. 

3. Weakly nonlinear theory 
When the pressure disturbance and its speed U are selected to generate long 

waves of small amplitude, the problem formulated in the previous section can be 
conveniently modelled in terms of weakly nonlinear-weakly dispersive theories. We 
present here a brief account of those theoretical aspects we have found useful in 
discussing the results of the fully nonlinear calculations. In particular, we consider 
the generalized Boussinesq model and the ensuing KdV formulation. 

In the long-wave limit two different lengths characterize the problem, namely 
an horizontal scale L, related to a typical wavelength, and a vertical scale h, the 
undisturbed channel depth. The strength of nonlinear effects is estimated by the ratio 

= a / h  of a typical wave amplitude to water depth, which, in the weakly nonlinear 
limit, is assumed to be a vanishingly small quantity. The amount of dispersion is 
controlled by the ratio dL = ( h / L ) 2 ,  again a small quantity for weakly dispersive 
conditions. When 8~ is of the same order as E ,  one obtains the weakly nonlinear- 
weakly dispersive regime. In general, as a further parameter given by the Froude 
number, we have to specify the speed of the disturbance in terms of the long-wave 
limiting speed go. With an appropriate choice of the dimensionless variables, 

the evolution equations for the waves generated by the disturbance may be reduced 
to the generalized Boussinesq system 

( 3 4  i V t  + Fyx + ex + e(@y)x = 0, 

(42t + F@LX + yx + 4%eX - $dL@xxt - $ F ~ L @ ~ ~ ~  = -Yx/€ , 

where % denotes the dimensionless depth-averaged value of the horizontal velocity 
u. A detailed derivation and discussion of (3.2), may be found, among others, in the 
papers by Wu & Wu (1982), Wu (1987), Lee et at. (1989)’ by Kevorkian & Yu (1989) 
as well as in the textbook by Mei (1989). We may note that a bounded solution 
of the above system requires an O(e)  forcing at most, thus suggesting arranging the 
pressure in the form of an €-expansion 

9 = € I l l 9 1  + 2n29’2 , (3.3) 

where, when dealing with distributions with non-zero spatial average, 91 and Y2  are 
conveniently normalized to form a unit integral. 

In the generalized Boussinesq system (3.2) the amplitude ratio e appears both 
explicitly and through the dispersion parameter d L .  In particular, without any 
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additional restriction, we set d L  = f which defines the horizontal scale as 

L = hf-'I2 . (3.4) 
Consistently we may expect the solution of system (3.2) to depend on e, i.e. es- 
sentially on the intensity of forcing. The system has been solved numerically in 
Wu & Wu (1982) by means of a finite difference scheme. For the purpose of com- 
parison with the fully nonlinear calculations, we choose here the improved algorithm 
suggested by Wei et al. (1995) in their study on higher-order Boussinesq models. 

3.1. The Korteweg-de Vries model 
A more direct insight into the behaviour of the waves may be gained by reducing 
(3.2) to suitable Korteweg-de Vries equations. To this end, in Kevorkian & Yu (1989) 
a multiple-scale formalism has been devised by introducing a slow time variable 

z = €t  (3.5) 

q = r l ( t ; z ; x ) + f q 2 ( t ; z ; X ) ,  42 = ~ l ( t ; t ; x ) + f ~ 2 ( t ; z ; X ) .  (3.6) 

and the related e-expansions for the unknowns 

Consistently the solution at order E is found in the form of two decoupled waves, f 
and g respectively, which are solutions of two KdV equations, 

(3.7) 3 1 f ?  + i f f (  + if%<( = 0, g? - zggg - g g m  = 0 7 

with initial conditions given by 

9 1  

F-1 
g([, z = 0) = -;Ill -. 

In the above equations, in addition to the slow time z, the independent variables are 
the characteristics of the linearized problem, 

= x - ( F  + l ) t ,  < = x - ( F -  1)t. (3.9) 
The free-surface elevation is finally recovered as 

(3.10) 

This solution holds when the Froude number is significantly different from one, to 
avoid the blow-up implied by the initial conditions (3.8). Furthermore the pressure 
distribution, which gives the initial conditions for the two f -  and g-waves, is con- 
strained by the long-wave assumptions, i.e. appreciable variations are required to take 
place on the long spatial scale L. With the above requirements, the wave system is 
described, in the reference frame of the disturbance, in terms of a steady component 
and two signals, namely the f -wave, always right propagating, and the g-wave, either 
left or right propagating for F < 1 and F > 1 respectively. 

In transcritical flows, a different procedure is required. The blow-up can only be 
avoided for Ill = 0, i.e. for an order-e2 pressure forcing. In this case an O ( E )  detuning 
from critical conditions may be consistently considered, 

F = 1 +€A, R = O(1) , (3.11) 

and the wave system is now entirely defined, at the specified order, in terms of a 
single g-wave following from a forced KdV equation, 

g, + k x  - ;ax - g g * x x  1 = 3n2.92. 1 3 (3.12) 
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with homogeneous initial conditions. The proper order of magnitude for the solution 
requires 1 7 2  = 0(1) and even highly compact forcings, in the form of a Dirac 
distribution on the scale L, are allowed (Akylas 1984). Finally, we mention that the 
numerical solutions of (3.12) we use in the discussion of the transcritical problem 
have been computed with the scheme described in Kevorkian & Yu (1989). 

3.2. The pressure distribution 
The amplitude ratio e may be related to known characteristics of the forcing. In 
particular, we assume, for the sake of simplicity, 

p* = p*(x*)H(t*) , 
where H(t*)  is the Heaviside step function, and, consistent with the outlined theory, 
we set 

P = E L l l P l ,  P = e2172.533'2 (3.13) 
for off-critical and transcritical flows, respectively. After defining the pressure force 
intensity 

Ep = __ /p*dx* , 
pgh2 

(3.14) 

the above equations relate the amplitude ratio E to the actual forcing. Namely, 
ep = O ( E ' / ~ ~ )  where a1 = 2 and a2 = 2/3 are the appropriate exponents for the 
off-critical (i = 1) and the transcritical ( i  = 2) case, respectively. Without loss of 
generality, we may enforce ep = e1/', to yield, in the two cases, 17, = 1 and L12 = 1. 
This relates the horizontal length scale to the forcing intensity, L = heia"2, and 
determines the distributions 

n* 

(3.15) 

defined by the two equations (3.13). Finally, according to (3.1),(3.4) and the connection 
between e and ep, x = x*/(hepa"2). 

With these scalings, we see that either the initial conditions (3.8) for the homoge- 
neous KdV equations (3.7) in off-critical flows, or the forcing term of equation (3.12) 
for the transcritical case, are entirely determined by the corresponding shape function 
gi(x). Namely, these functions define an equivalence class of forcings which yield ep- 
independent solutions for the relevant KdV equations. Within each class, any element 
is determined by its pressure force intensity eP which, given the channel depth h, fixes 
the scaling between x and x* and, through equation (3.15), the pressure distribution 
p* in physical variables. In most of the cases considered, the physical pressure acting 
upon the initially undisturbed free surface is obtained from the compactly supported 
distribution { i K ' l + c o s ( n K x ) ) ,  (XI < 1/K, 

(3.16) Yi(X)  = i =  1 , 2 .  
1x1 > 1/K, 

4. Sub- and super-critical conditions 
Here results, as obtained by the nonlinear modelling of $2, are contrasted with 

the predictions of the weakly nonlinear theory summarized in the previous section. 
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FIGURE 2. Evolution of the free surface in the subcritical case ( F  = 0.5, K = 0.025, eP = 2.0). The 
horizontal coordinate x and the wave elevation are scaled with the initial depth h and t = t*Co/h. 

The physical pressure distribution, corresponding to (3.16), has a compact support of 
length 2d = 2 h / ( K  fp)  and is readily obtained as 

P*(x*) = p g h €; Yl(fp x*/h). (4.1) 
It  may be noted that the parameter K appearing in (3.16) is the ratio L / t  of the 
characteristic horizontal scale to half the support length. 

Even in the context of the KdV €,-independent approximation, the solution in 
physical variables presents an involved dependence on the intensity of the forcing, 
owing to the relative motion of the three wave components which spread out on the 
fast time scale, while nonlinearly self-interacting on the slower one. This circumstance, 
which may hamper the assessment of genuine nonlinear effects, is easily bypassed by 
analysing the present results in terms of the variables 

t* 

suggested by the multiple-scale formalism. In this description we expect, at leading 
order, the different wave components to exhibit the €,-independence, appropriate 
to the KdV model, and we are allowed to ascribe any different behaviour to the 
neglected nonlinearities. 

4.1. Subcritical regime 
In the following we assume h = 1.0 and, unless otherwise stated, K = 0.025. A 
typical evolution of the free surface in the reference frame of the external pressure 
field is described in figure 2. A steady depression develops under the disturbance, 
centred around x = 0, which, in the frame of the undisturbed fluid, moves in the 
negative x-direction. The two unsteady components correspond to the f -  and g-waves 
considered in $3. 

With the adoption of the slow time z and the characteristic variable [ to follow the 
g-wave, several cases are considered at z = 1600 for increasing ep (figure 3), after veri- 
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FIGURE 3. Subcritical wave patterns for increasing pressure intensity ep 
( F  = 0.5, K = 0.025, z = 1600). 

fying the grid-independence of the solutions. In substantial agreement with the theory 
for the KdV equation, Segur (1973), the self-interaction of the packets asymptotically 
leads to a train of solitary waves, in order of amplitude. However, higher-order effects 
emerge from the comparison of the wave profiles. On the ground of the KdV theory of 
$3, the physical amplitudes of the emitted packets are expected to linearly increase with 
c, thus resulting in constant heights in the present dimensionless diagrams. The numer- 
ical solutions, instead, clearly indicate a deviation from the theoretical predictions : the 
physical wave heights are observed to increase less than theoretically expected. This 
finite-amplitude effect will be further discussed below. Note the phase shift apparent 
in figure 3, where the stronger packets are delayed with respect to the weaker ones. 
The origin of this shift is twofold. First, as is known, solitary waves exhibit amplitude 
dispersion and, to first order, the phase velocity increases linearly with the wave ampli- 
tude. This correction is implicitly included in the definitions of z and [. Hence, in the 
present variables, all curves should collapse one on the other if the first-order correc- 
tion to the propagation speed were the only one effectively present. Higher-order the- 
ories, Fenton (1972), show that the successive terms are always reducing the first-order 
prediction. Therefore, in this representation, consistently with the present observation, 
weaker trains (smaller c) should precede stronger ones. Second, due to the described 
finite-amplitude effect, the strongest waves have, in this case, physical amplitudes 
reduced with respect to the theoretical KdV predictions. Here amplitude dispersion 
enters at first order, producing a further reduction in speed. These two aspects combine 
in determining the observed phase shift. In particular, since the finite-amplitude effect 
acts at a linear level, it introduces a more effective speed reduction. We thus conjecture 
the second mechanism to be the predominant one in causing the total phase shift. 

The present results suggest in particular the initial transient as the possible origin 
of the observed behaviour of the packets. This phase is entirely missed by the KdV 
description, which establishes an equivalence between the complete forced problem, 
where the pressure perturbs an initially undisturbed free surface, and the free evolution 
of suitably defined initial data, (3.8). On physical grounds, this results in neglecting 
the interactions among the (left and right) propagating packets and with the localized 
depression underneath the external surface forcing. These interactions may become, 
in principle, more significant for increasing amplitudes of the forcing. In an attempt to 
quantify their role, we compare the solutions of two different problems: the physical 
one, where the external pressure generates the wave motion, and a non-interacting 
solution, where the left- and right-propagating packets spread out from an initial 
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FIGURE 4. Free-surface configurations ( F  = 0.5, K = 0.025, t = 1600) for the complete (solid line) 
and the non-interacting initial value problems (broken line) for two different forcing intensities. The 
bump (- -) represents the initial elevation for the non-interacting solution. The vertical lines are 
drawn to help estimating the phase shifts. For ep,= 2.1909 (b) ,  the solution of the gB equations ( 0 )  

can hardly be distinguished from the corresponding nonlinear result. 
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X 

FIGURE 5. The wave pattern ( F  = 0.5, eP = 0.6324) predicted by the Boussinesq system (dash-dotted 
line) is compared with the fully nonlinear solution (solid line) for the case of a short support, 
K = 25, of the pressure distribution. 

hump shaped according to (3.8) (non-interacting initial value problem). Any observed 
difference may reasonably be ascribed to the neglected interactions. More precisely, 
only slight differences are expected for weak forcings, the actual range described 
by the KdV equation, while the discrepancies should become conspicuous for larger 
excitation amplitudes. In fact, considering for definiteness only the left-propagating 
packet, in figure 4 identical evolutions are found for the complete and the non- 
interacting problems, when the forcing is weak (a) .  When the intensity of the forcing 
is increased (figure 4b), the solutions are apparently different, thus confirming that 
for larger nonlinearities the mutual interactions among the components of the wave 
system cannot be consistently ignored. 

The different evolutions allow us to assess the relative importance of the two 
mechanisms explaining the phase shift. Actually, the packets evolving from the 
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FIGURE 6. Evolution of the free surface in the supercritical case F = 2.0. ep = 0.6324, 
K = 0.025. Variables defined as in figure 2. 

initial conditions are, for the larger ep, slightly delayed with respect to weaker ones 
(the phase shift between the dashed curves, the first on figure 4(a) the second on 
4(b)). The reduction in speed associated with the finite-amplitude effect is strongly 
predominant over the other (figure 4b), thus confirming the initial conjecture. Since 
the present results essentially identify the phenomenon with a mutual interaction 
among different wave components, we may expect the Boussinesq model (3.2) to 
reproduce the nonlinear wave forms (see the gB solution in figure 4). 

The evolution of the right-propagating wave essentially parallels that just described 
for the left-going system, the main differences being largely explained through (3.8), 
where the large denominator accounts for the smaller amplitude. 

The value of the parameter K ,  held fixed in the cases just considered, is relatively 
small. For fixed intensity ep and shape function, the dispersion effects increase with 
K (i.e. with reducing the base length) and an intense dispersive tail associated with 
the wave going left is observed for K = 25. For this case, figure 5 compares the 
free-surface configurations provided by the gB equations (dash-dotted lines) with the 
nonlinear results (solid lines). The high dispersion is poorly modelled by the standard 
Boussinesq approximation and more general expansions (see e.g. the discussion in 
Wei et al. 1995) may be in principle required. Such a high value for K has been 
considered owing to the small nonlinearities. Actually, for higher ep, increasing K 
would result in the steepening of the crests forming the dispersive tail until breaking 
occurs due to the interaction with the local disturbance. 

4.2. Supercritical regime 
Without entering into detail, we recall the major features of the supercritical regime. A 
typical result is considered in figure 6 .  It may be noted that the steady component of 
the wave pattern is now in the form of a hump, consistent with the weakly nonlinear 
description, see (3.10). The two unsteady signals, corresponding to the theoretically 
predicted f- and g-waves, are both left behind the forcing and, in particular, the 
g-type component, according to (3.8), has a negative mean value. 

5. Transcritical regime 
From the theory of $3 we know that, in transcritical conditions, Fr N 1, the flow 

presents specific features. The pressure amplitude is now required to be of a lower 
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order ( O ( c 2 ) )  than in the previous cases (O(c) ) ,  and a higher free-surface response 
to excitation ratio is obtained. Moreover, the range of validity with respect to 
the parameter K-‘ = t / L ,  which measures the pressure extension in terms of the 
horizontal length scale, is now wider, including even very short base lengths. It is 
then possible to have water deep with respect to the disturbance length even though 
the flow regime corresponds to the long-wave limit. 

According to the scalings given in 93.2, the proper set of dimensionless variables 
for the transcritical case (i = 2) is 

which, although obtained through a different procedure, coincides exactly with those 
given in Akylas (1984). The corresponding wave forms scale according to 

For the present computations h = 1 and K = 2.1542, which, for ep = 0.1, gives 
G = 1.0 (one of the cases considered in Wu 1987). 

In the linear case, as discussed in Akylas (1984), the critical solution exhibits a di- 
vergent behaviour. Completely different wave patterns, discussed in Wu & Wu (1982) 
in the framework of the weakly nonlinear theory, are obtained when the nonlinear 
terms are retained. In particular the fully nonlinear results in figure 7 show a long- 
time behaviour characterized by the periodic emission of forward running waves. 
These periodic flow conditions define the transcritical regime, which in the context of 
a weakly nonlinear model, may be characterized more sharply, Shen (1993), in terms 
of a critical range for the detuning parameter i = ep2’’(F - 1) centred around ,I = 0 
(see also the paper by Miles 1986). 

Another distinguishing feature in figure 7 is the continuously developing region 
of depressed mean level, trailing the pressure disturbance. Further downstream, this 
almost flat portion is connected to the rightmost unperturbed free surface by a wavy 
transitional region (Wu 1987). 

Figure 8 quantitatively compares the wave forms for two different amplitudes of 
the forcing. The fKdV model predicts the similarity of the solutions with respect to 
the forcing intensity cp, see (5.2). This result does not hold exactly in the present 
case, where the emitted wave heights, expressed in the variables (5.1), clearly show a 
dependence on the excitation amplitude. Consequently, as emerges from the figure, 
the phase speed is affected also. In this case the actual free-surface response is stronger 
than predicted by the fKdV model, a trend opposite to the one observed for the results 
given in $4. An extended comparison among the exact results and the weakly nonlinear 
models is presented in figure 9. The results of figure 10, which like the others shown 
in the present paper have been checked under time step and spatial grid refinement, 
report the wave pattern for several values of E,,. In particular, when increasing the 
forcing, the steepening of the first crest trailing the disturbance is observed. Figure 11, 
for the specific value ep = 0.12, shows the natural scale profile of the peaking crest. 

The trailing wave system is discussed by considering, figure 12, a larger portion 
of the computational domain. Downstream of the depression, the mean water 
height gradually increases to the undisturbed level far from the disturbance. This 
intermediate region is characterized by a trailing system of waves whose amplitudes 
gradually decrease downstream (see e.g. the curve corresponding to z = 7.5). The 
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FIGURE 8. Fully nonlinear computations according to the formulation of $2. Wave forms for I = 0 
(critical conditions) for ep = 0.05 (solid line) and eP = 0.1 (broken line). Dimensionless variables 
according to (5.1 ). 
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FIGURE 9. The wave patterns, predicted by the fully nonlinear model (FNL), the generalized 
Boussinesq system (gB) and the forced KdV equation (fKdV), are compared for the case of figure 8. 
z = 12.5, I = 0. 

reported for z = 12.5. The heights of the upstream waves increase with ,I (figure 13a), 
since larger runaway velocities are required for increasing speed of the disturbance, 
thus implying higher waves. The opposite behaviour is observed in figure 13(b) for the 
trailing system, with higher crests for smaller values of A. A larger subcritical detuning 
is considered in figure 14, where the upstream influence appears in the form of a 
developing undular bore, see e.g. Melville & Helfrich (1987). Despite the quantitative 
differences, the exact formulation and the weakly nonlinear models predict the same 
qualitative behaviour. 

For sufficiently intense forcings, wave steepening is always observed and a consis- 
tent picture emerges from the simulations. Namely, for fixed ep, by decreasing ,I, a 
region in the parameter space is entered where the breaking of the first trailing crest 
occurs, as already observed in figure 11. On the other hand, when R is increased, the 
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FIGURE 10. Wave patterns at the critical condition for high intensities of the forcing. z = 6.25, 
1 = 0. For cp = 0.12 a later configuration shows the spilling behaviour of the first lee-wave crest. 
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FIGURE 13. Effect of the detuning parameter 2 on the wave pattern: ( a )  upstream-emitted 
and ( b )  trailing waves. t = 12.5, ep = 0.10. 
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FIGURE 14. Development of the upstream undular bore for A: = -0.928, T = 15.0 and fp = 0.05. The 
three curves report the fully nonlinear, the generalized Boussinesq and forced KdV wave patterns. 
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FIGURE 15. Growth and detachment of a forward running wave for a supercritical case (a): Fr = 1.15, 
2. = 0.696, ep = 0.1; the time interval between wave profiles is At 2 1.739 for t 12.17 (dash-dot 
line curve) and A t  = 0.348 for 7 12.17. Soon after detachment, the packet loses its symmetry. The 
following evolution is reported in (h ) .  



416 C. M. Casciola and M .  Landrini 

first upstream wave eventually undergoes localized steepening - see the natural scale 
profile in figure 15 - and finally overturns (figure 1%). This phenomenon, reported 
for the nominally two-dimensional experiments by Lee et al. (1989), is also observed 
in the three-dimensional transcritical flows about ship models by Ertekin et al. (1984). 
Although a systematic investigation has not been presently undertaken, critical con- 
ditions always separate the ranges of the two different behaviours. Additional results 
concerning wave breaking in transcritical flows are discussed in Teles da Silva & 
Peregrine (1992), where, instead of a pressure forcing, a moving bottom topography 
is considered. 

The frequency of the emission corresponds to the time interval between two 
successive maxima in the wavemaking resistance. During the ripening phase the 
energy, supplied by the forcing, is stored in the nascent ‘soliton’ until a sufficient 
height is reached for detachment. Consistent with the weakly nonlinear results, Lee 
et al. (1989), the period increases with Froude number and decreases with the intensity 
of the forcing. 

6. Concluding remarks 
It is confirmed that weakly nonlinear models actually capture most of the fea- 

tures observed in the fully nonlinear solutions of forced long waves. Nevertheless, 
several points emerge from the present analysis. In particular, finite-amplitude ef- 
fects are systematically observed in off-critical flows. Suitably designed numerical 
experiments, $4, enlightened the crucial role of the stage during which the f -  and 
g-waves are generated. In fact, the KdV model assumes that the steady compo- 
nent and the emitted wave packets evolve with no interaction of one with the 
other. The physical interpretation of this hypothesis suggests the complete equiv- 
alence of the exact problem with the non-interacting evolutions for the f -  and 
g-waves. This assumption may not be adequate during the generation, when the 
three waves are actually superimposed. The equivalence is found to hold in fact 
only for very weak forcings, as verified in detail. At higher amplitudes, the ne- 
glected interactions are responsible for the dependence of the solution, in terms of 
both amplitude and phase, on the forcing intensity, as correctly predicted by the gB 
model. For increasing dispersion, the agreement between the Boussinesq and the fully 
nonlinear description is lost. In these conditions the weakly nonlinear-weakly disper- 
sive models require improvements in order to correctly predict the wave behaviour 
(Wei et al. 1995). 

In subcritical conditions, the g-packet precedes the forcing and eventually splits into 
solitary-wave-like components, consistently with the weakly nonlinear descriptions. 

The basic features provided by the weakly nonlinear theory are also confirmed 
for transcritical flows. However, we observed in this case the tendency toward wave 
breaking when the forcing exceeds a given threshold which is found to depend on 
the actual value of the detuning parameter. Furthermore, consistent with experi- 
mental observations, the breaking also tends to occur at the first trailing crest or 
at the first emitted soliton-like wave when the flow is slightly sub- or super-critical 
respectively. 

The research of M.L. was partially supported by Minister0 dei Trasporti e della 
Navigazione through INSEAN - Research Program 1994-96. 
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